UPDATES ON DAIRY GOATS FARMING IN KENYA

KVA-SEVET Branch

Dr Anne Ndeke
Introduction

- Goats contribute 2% of the world's milk and 80% of rural families protein.
- The dairy subsector in Kenya contributes 3.5% of GDP.
- 27,740,153 (Kenya Bureau of Statistics 2009)
- 251,100 dairy goats
- Influx of exotic breeds over the last four decades
Advantages

- Ability to thrive well across agro-ecological zones.
- Functional contribution in terms of Meat, milk, fibre and skin
- Have a socio-economic relevance as they are a source of income and security for the rural poor
Background

- FAO/GoK-Introduced goat production in 1970
- USAID- Small ruminant Collaborative research Activity 1981-1984. Kenya Dual purpose goat producing 1.5-3ltrs/day
• FARM Africa-1996 Meru- Toggenburg gave rise to MGBA. Project extended to Mwingi 2006

• HPIK- Saanen South Nyanza 2005
 ➢ Makueni
Objectives

- To improve livelihoods of small-holder farmers through livestock development,
- To improve family nutrition and income of poor farmers,
- To create employment within target communities,
- To increase milk production of the indigenous goat and to enhance market access by the poor.
Organizational structure

- Farmers are grouped into groups of 18-25 farmers.
- There is a central buck station where farmers can access the buck for mating.
- Breeding farms contribute males to the buck stations.
- Bucks are rotated every 1 ½ year to avoid inbreeding.
- Crossing is done up to the ¾ Toggenburg cross is reached.
Successes

- An improvement in farmers' income is evident, with an increase in the value of the stock owned.
- Prices of breeding goats within the community ranges from $35 for an indigenous goat to US $140 for a crossbred and US $295 for a pure-bred Toggenburg.
- Jobs are created through the breed associations.
Challenges

- Importation of breeding stock not possible, due to restrictions on imports of livestock and livestock products,
- Uncontrolled outbreaks of diseases leading to deaths,
- Lack of goat specific products
- The cost of buck movement from one station to the other station, buck maintenance costs high and can not be maintained by fees charged during service.
• The increasing number of farmers / group needing buck service with decreasing numbers of bucks.

• Low production in Mwingi and Homabay

• Lack of characterization of ¾ goats (Meru dairy goat) as a requirement for entering in Kenya stud book.
Way forward

• The use of alternative breeding methods such as Artificial Insemination in order to expand the exotic gene-pool

• Appropriate breed availability, optimal management package, value addition and marketing options

• Consolidating information on performance of various dairy goat breeds from the various introduction ventures in the country for research gap and interventions identification
• Higher role by Government in industry promotion
• Improving breeding methods such as AI, and semen collection and processing to overcome buck unavailability problem
• Incorporating the medical and human nutrition aspects into the goat milk for better publicity for increased demand of dairy goat products
What has been done

- In 2010 about 80 AI technician were trained by DGAK
- 131 kids have been produced through AI
- Success rate is still low 40-45%
- EAAPP project running from 2010-2014
Areas targeted

Kericho and Kirinyaga - Alpine
Meru and Mwingi - Toggenburg
Kisumu and Migori - Saanen
Project objectives

- To evaluate on-farm dairy goat breed adaptability and their management strategies so as to document the breed performance levels in various climatic conditions for recommendation to other farmers,

- To evaluate and pilot test alternative on-farm estrous synchronization and artificial insemination protocols for delivery of appropriate dairy goat genotypes in Kenya,
To improve local dairy goat semen collection, processing and storage for dairy goat multiplication in Kenya and to disseminate outputs from dairy goat research work in Kenya.
Future Goats after the project